DIGITAL CONTROL SYSTEMS

Course Code	19EE4702C	Year	IV	Semester	Ι	
Course Category	Program Elective-V	Branch	EEE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Control systems	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Explain and classify discrete representation of LTI systems. L2					
CO2	Evaluate knowledge on Z-Transforms in discrete time analysis. L5					
CO3	Examine the conventional and state space methods for discrete systems L4					
CO4	Analyze the stability criterion for digital systems and methods L4					
CO5	Develop and design digital compensators explicitly compared to continuous time					
	compensators. L3					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3											2	3	3
CO2	3	3										2	3	3
CO3	3			2								2	3	3
CO4	3			2								2	3	3
CO5	3		3	2								2	3	3

Syllabus			
Unit No.	Contents	Mapped CO	
Ι	Introduction and signal processing: Introduction to analog and digital control systems – Advantages of digital systems – Typical examples – Continuous and Discrete Time Signals – Sample and hold devices – Sampling theorem and data reconstruction(A/D&D/A) – Frequency domain characteristics of zero order hold.	CO1	
II	z-transformations: z-Transforms – Theorems – Finding inverse z-transforms – Formulation of difference equations and solving – Block diagram representation – Pulse transfer functions and finding open loop and closed loop responses.	CO2	
III	 State space analysis and the concepts of Controllability and observability: State space representation of discrete time systems – Solving Discrete Time state space equations – State transition matrix and its properties – Discretization of continuous time state equations – Concepts of controllability and observability – Kalman Test(without proof). State Feedback Controllers and State Observers 	CO3	

	Design of state feedback controller through pole placement – Necessary and sufficient conditions – Ackerman's formula – Design of state observers (Full Order).	
IV	Stability analysis: Mapping between the s–Plane and the z–Plane – Primary strips and Complementary strips – Stability criterion – Modified Routh's stability criterion (bilinear transformation) and Jury's stability test.	CO4
V	Design of discrete-time control systems by conventional methods: Transient and steady state specifications – Design using frequency response in the w-plane for lag and lead compensators	CO5

Learning Resources

Text Books

1. Discrete-Time Control systems - K. Ogata, Pearson Education/PHI, 2nd Edition.

2. Digital Control Systems, Kuo, Oxford University Press, 2nd Edition, 2003.

Reference Books

1. Digital Control and State Variable Methods by M.Gopal, TMH, 4th Edition